Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Honeybees, as natural crop pollinators, play a significant role in biodiversity and food production for human civilization. Bees actively regulate hive temperature (homeostasis) to maintain a colony’s proper functionality. Deviations from usual thermoregulation behavior due to external stressors (e.g., extreme environmental temperature, parasites, pesticide exposure) indicate an impending colony collapse. Anticipating such threats by forecasting hive temperature and finding changes in temperature patterns would allow beekeepers to take early preventive measures and avoid critical issues. In that case, how can we model bees’ thermoregulation behavior for an interpretable and effective hive monitoring system? In this article, we propose theprincipledElectronic Bee-Veterinarian Plus (EBV+) method based on the thermal diffusion equation and a novel “sigmoid” feedback-loop (P) controller for analyzing hive health with the following properties: (i) it iseffectiveon multiple, real-world beehive time sequences (recorded and streaming), (ii) it isexplainablewith only a few parameters (e.g., hive health factor) that beekeepers can easily quantify and trust, (iii) it issuesproactivealerts to beekeepers before any potential issue affecting homeostasis becomes detrimental, and (iv) it isscalablewith a time complexity of\(O(t)\)for reconstructing and\(O(t\times m)\)for findingmcuts of a sequence withttime-ticks. Experimental results on multiple real-world time sequences showcase the potential and practical feasibility of EBV+. Our method yields accurate forecasting (up to72%improvement in RMSE) with up to600times fewer parameters compared to baselines (ARX, seasonal ARX, Holt-winters, and DeepAR), as well as detects discontinuities and raises alerts that coincide with domain experts’ opinions. Moreover, EBV+ is scalable and fast, taking less than1 minuteon a stock laptop to reconstruct 2 months of sensor data.more » « lessFree, publicly-accessible full text available June 30, 2026
-
Transparency and accountability have become major concerns for black-box machine learning (ML) models. Proper explanations for the model behavior increase model transparency and help researchers develop more accountable models. Graph neural networks (GNN) have recently shown superior performance in many graph ML problems than traditional methods, and explaining them has attracted increased interest. However, GNN explanation for link prediction (LP) is lacking in the literature. LP is an essential GNN task and corresponds to web applications like recommendation and sponsored search on web. Given existing GNN explanation methods only address node/graph-level tasks, we propose Path-based GNN Explanation for heterogeneous Link prediction (PaGE-Link) that generates explanations with connection interpretability, enjoys model scalability, and handles graph heterogeneity. Qualitatively, PaGE-Link can generate explanations as paths connecting a node pair, which naturally captures connections between the two nodes and easily transfer to human-interpretable explanations. Quantitatively, explanations generated by PaGE-Link improve AUC for recommendation on citation and user-item graphs by 9 - 35% and are chosen as better by 78.79% of responses in human evaluation.more » « less
-
Knowledge graph embeddings (KGE) have been extensively studied to embed large-scale relational data for many real-world applications. Existing methods have long ignored the fact many KGs contain two fundamentally different views: high-level ontology-view concepts and fine-grained instance-view entities. They usually embed all nodes as vectors in one latent space. However, a single geometric representation fails to capture the structural differences between two views and lacks probabilistic semantics towards concepts’ granularity. We propose Concept2Box, a novel approach that jointly embeds the two views of a KG using dual geometric representations. We model concepts with box embeddings, which learn the hierarchy structure and complex relations such as overlap and disjoint among them. Box volumes can be interpreted as concepts’ granularity. Different from concepts, we model entities as vectors. To bridge the gap between concept box embeddings and entity vector embeddings, we propose a novel vector-to-box distance metric and learn both embeddings jointly. Experiments on both the public DBpedia KG and a newly-created industrial KG showed the effectiveness of Concept2Box.more » « less
-
Honeybees are vital for pollination and food production. Among many factors, extreme temperature (e.g., due to climate change) is particularly dangerous for bee health. Anticipating such extremities would allow beekeepers to take early preventive action. Thus, given sensor (temperature) time series data from beehives, how can we find patterns and do forecasting? Forecasting is crucial as it helps spot unexpected behavior and thus issue warnings to the beekeepers. In that case, what are the right models for forecasting? ARIMA, RNNs, or something else? We propose the EBV (Electronic Bee-Veterinarian) method, which has the following desirable properties: (i) principled: it is based on a) diffusion equations from physics and b) control theory for feedback-loop con- trollers; (ii) effective: it works well on multiple, real- world time sequences, (iii) explainable: it needs only a handful of parameters (e.g., bee strength) that beekeep- ers can easily understand and trust, and (iv) scalable: it performs linearly in time. We applied our method to multiple real-world time sequences, and found that it yields accurate forecasting (up to 49% improvement in RMSE compared to baselines), and segmentation. Specifically, discontinuities detected by EBV mostly co- incide with domain expert’s opinions, showcasing our approach’s potential and practical feasibility. Moreover, EBV is scalable and fast, taking about 20 minutes on a stock laptop for reconstructing two months of sensor data.more » « less
An official website of the United States government

Full Text Available